I18

LIGAND DISPLACEMENT REACTIONS OF MF_5 .L (M = P, As, Sb) STUDIED BY MULTINUCLEAR NMR SPECTROSCOPY

Michael F. A. Dove, Eleanor M. Lloyd Jones* and Jeremy C. P. Sanders Department of Chemistry, The University, Nottingham NG7 2RD (U.K.)

The pentafluorides of phosphorus, arsenic and antimony are known to form neutral 1:1 complexes with many organic bases (E.L. Muetterties, Advances in the Chemistry of Coordination Compounds, 1961, 513). Such compounds are of interest as possible precursors in the preparation of the hexahalo anions PF₅X (P.J. Chevrier and S. Brownstein, J.Inorg.Nucl.Chem., 1980, <u>42</u>, 1397), AsF₅X⁻ and SbF₅X⁻ (M.F.A. Dove, J.C.P. Sanders, E. Lloyd Jones and M.J. Parkin, J.Chem.Soc., Chem.Commun., 1984, 1578). The adducts MF_r.L (M = P, As, Sb; L = MeCN, py, Me_3N) have, therefore, been synthesised in a pure state by direct reaction of the base with the metal pentafluoride in a suitable solvent (such as MeCN, CH_2Cl_2 or $CClF_2CCl_2F$). The adducts were characterised by ${}^{31}P$, ${}^{75}As$, ${}^{121}Sb$ and ${}^{19}F$ NMR spectroscopy. With the exception of ${\tt PF}_{\sf S}.{\tt MeCN}$, the central nucleus resonances have not previously been studied. Although no ⁷⁵As $(I = {}^{3}/{2})$ or 121 Sb $(I = {}^{5}/{2})$ resonances could be obtained from the acetonitrile adducts, the central nucleus resonances of the pyridine and trimethylamine adducts showed binomial sextets. Proton decoupling resolved the one bond coupling to ${}^{14}N$ (I = 1) in PF₅.NMe₃, PF₅.py and AsF₅.py.

There is a large contrast between the reactivities of these adducts, which is shown by attempts to displace the base to form MF₅x⁻ anions. Addition of methanol to PF₅.L and SbF₅.L resulted in the formation of the pentafluoromethoxy anions. NMe₃H⁺PF₅OMe⁻ and pyH⁺SbF₅OMe⁻ were isolated as pure solids and the anions were characterised by NMR, but no ¹²¹Sb resonance was obtained from the SbF₅OMe⁻ anion. SbF₅OMe⁻ was converted to SbF₅X⁻ (X = Cl, Br) by reaction with the corresponding acetyl halide. SbF₅.MeCN reacted with NEt₄⁺X⁻ (X = Cl, Br, NCS, NCO) to form SbF₅X⁻. The previously unobserved SbF₅NCS⁻ and SbF₅NCO⁻ anions were shown by ¹⁴N NMR to be N-bonded. However, addition of NEt₄⁺X⁻ to PF₅.MeCN or AsF₅.MeCN produced a mixture of MF₆⁻ and MF₅X⁻. Pyridine and trimethylamine were found to be more difficult to displace. Complete conversion to MF₅X⁻ was observed only with the antimony adducts. AsF₅.py and AsF₅.NMe₃ showed anomalous behaviour since they were air-stable, and inert to substitution of the base.